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Atmospheric Noise Temperature Measurements

C. T. Stelzried
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Radiometric microwave noise temperature measurements are used to estimate
atmospheric transmission loss. It is common practice to use the following lumped element
model expression for the noise temperature contribution,

AN .

T" = T,(1-1/L)

This relationship is used to estimate the transmission loss L in terms of T and the
atmosphere effective physical temperature T, This report evaluates Tp in terms of
assumed distributed loss and temperature models. Simplified expressions are presented
for low loss applications. For these applications L is determined directly and accurately
without integration or iteration.

l. Summary where
Radiometric microwave noise temperature measurements 1-1
are used to estimate atmospheric transmission loss. It is k= 1-1/L

common practice to use the lumped element model expression
for the noise temperature contribution

Y 1 @ /a &
T=Tp(1"1/L) I='——————a—/7;f 7dZ
(lnazlal)e 2 @, fa

This relationship is used to estimate the transmission loss L in
terms of 7" and the atmospheric effective physical tempera-
ture T,. This report evaluates 7, in terms of assumed
distributed loss and temperature models. For exponential loss
and linear temperature distributions

These equations are evaluated and T, is presented for a
range of values for L and o, /0‘1‘ For low loss (L ~ 1)

% a,le, 1
T, =T, +k(.T2 -T)) (@,/a)-1  In(e,/a)
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As an example, if a, /o, = 10, we have k = 0.6768. Then for
this model

T, =T, +0.6768(T,-T,).

This provides a useful estimate of T, (in some applications T';
is estimated and T, measured). Then from the lumped element
model

1
L= ——F5
1-T /Tp
This indicates that for low loss, L can be directly and

accurately determined from these models without integration
or iteration.

lIl. Introduction

Radiometer microwave noise temperature measurements
are used to estimate atmospheric transmission loss (Ref. 1). It
is common to use the lumped element model expression for a

lumped element model for the noise temperature contribution

T = T,(1-1/L) 1)

where
L = propagation path loss, ratio

Tp = atmosphere effective physical temperature, kelvins

to estimate the transmission loss
L= 2

This article investigates methods to evaluate T, required for
the appropriate transmission path model.

lll. Theory

We have (Ref. 1, Eq. 3, using the same symbols and
definitions)

1
a(x’) dx’

1 -
T" =J a@®) T (x)e ™™ dx 3)
0

a8

Substitute, x = yI

1
1 —f a(y' ) dy’
T =f a)IT@)e " dy 4)
0
Using
1
2f 0" )
yi
results in
Zy
7" = - f T (Z)e* dZ 6)
0
where
1
Z, = —f a@)ldy'
(i}

IV. Application

Consider the variable parameter model (Ref. 1, model 2)
with exponential propagation constant and linear temperature
distributions,

= aly
ay) = a €

(7)
TQ) =T, +(T,-T)y
Then, with Eq. (5),
Z = (@, /o) & -
= (o, /2) (™) - (e, /a)
Zl - (ala" a,)
and
o
(a,—a,)/a In (‘;—Z+—1-)
T" = —f T, +(T,~ T))————| ¢*dz (8)
0
Expanding
T"=T, (A-1L)+(T,-T)(1-1) ©®)




where (¢l = In a,/o,, oy fa = In Li(o, /ety - 1), (ay — @))a =
In L)

a.fa

5!

1 e
r=—31 | £z
(Ina,fe,) &2l o, /aZ

I'is solely a function of &, /e; and L. Equating Eqs. (1) and (9)

T, = (1~ k)T, +&T, (10)

where

The solution for k is obtained from numerical integration of /.
The results are shown in Fig. 1. Over this range of parameters,

k= 0.5+0.01768 L (dB) + 0.01768 (a, /e,) (dB)
- 0.000368 L (dB) (e, /et ) (dB) (1)

For example, if (a,/a,) (dB)= L (dB)= 10, we have k =
0.8168 so that for T'; =250K and T, = 290 K, 7; ~2827K,
which agrees with previous calculations (Ref. 1, Table 2,
case 3).

For L = 1, (from expansion of Eq. 8)

L-1 L-1
I~1- (0(2/0t1) (0‘2/0‘1)_ 1 +1n'(a2/011)

so that

a2/a1 1

k=l ':(az/ozl)— I In (0‘2/0‘1)]

@, /o, 1 12
- (ayfa )= 1 In(ay/ey) (12)
and similarly for (, /e, ) ~ 1 (also from Ref. 1, model 3)

IN _1_—_:_1__
~ \InL LInL

so that

1
IR ATY? a3
- 1L

for both L ~ 1 and &, /e, ~ 1 this reduces to k = 0.5

In Figs. 2, 3 and 4 T}, is shown plotted using model 2 for a
range of values of a, /ozl , L, T, and T, Precise transmission
loss estimates can be made from radiometer noise temperature
measurements for this model without integral evaluations
using Eqs. (2) and (10) [Egs. 12 or 13 if appropriate]. The
procedure is to calculate the loss using Eq. (2) iteratively with
Tp evaluated from Egs. (10) and (11). The required initial
estimate of Tp is given by 280K, (', +T,)/2 or other choice
as appropriate.

For example, if 7" = 254.4 K, (“2/0‘1) =10, T, = 250K,

T, = 290K, we have (using for initial estimate, Tp =(T, +
T,)/2 =270 K) from Eq. (2)

L =124dB

First iteration (Egs. 11, 10 and 2)

k = 0.8504

Tp = 284.0

L =98dB
Second iteration

k = 0814

Tp = 282.6

L =10.0dB

which indicates rapid convergence. For most applications, the
second iteration is not required. For example, starting with
Tp =270 K as above and T"'=210,6 K, 139.5 K and 57.1 K
results in (with 1 iteration) L = 6.02 dB, 3.01 dB, and 1.00 dB
respectively, (in agreement with previous calculations, Ref, 1,
Table 2). This technique is useful for other models with
application of Eqgs. (4) and (6). The solution for % is tabulated
in Table 1 for various models. Further, these methods apply
not only to atmospheric measurements, but to any determina-
tion of loss from radiometer calibrations such as transmission
line loss (required for thermal load standards, Ref.2) or
radome loss calibration (Ref. 3).
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For an application example at small loss, assume (a, /o, ) =~
10, L ~ 1. Then

T, = T, +0.6768(T,~ T,) (14)

In some applications, T, would be estimated and 7, mea-
sured. Using Eqgs. (14) and (2):

Case 1
T, = 250K Tp = 2771 K
T2 = 200K |=> L =~ 0.159dB
T'"= 10K

Case 2
T1 = 250K Tp =~ 290.6 K
T2 = 310K |= L = 0.152dB
T"= 10K

The small difference between L calculated for cases 1 and 2
illustrates that for small losses L is insensitive to errorsin 7.
- In these examples, the error in T using Eq. (14) is approxi-
. . b .
mately 1.3 K, resulting in an error in L of approximately
0.01 dB. This example demonstrates that for low loss applica-
tions, determine or estimate, a, /oz1 , calculate k from Eq. (12),
T, from Egq. (10) and L from Eq. (2). This is accomplished
directly without integration or iteration.

For comparison, a linear/linear variable parameter model
(Ref. 1, model 6) is analyzed in Appendix A and summarized
in Fig. A-l1 and Table 1. This model results in (using
parameters of Case 1 above)

k =~ 0.6364

~3
R

2755K

L = 0.161 dB
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This indicates that for low loss, the solution for I is insensitive
to the model choice.

V. Conclusion

Various expressions are derived for the effective physical
temperature T, of the atmosphere for use in the lumped

element model expression for the noise temperature
contribution
T = T, (a-1/L)
We have
T, = T, +k(T,-T))
where
_ -1
/7

I is derived and evaluated for a range of values for L and
(a,/a;) for 2 models. Low loss, useful and accurate approxi-
mations are given by

i~ a,fa, _ 1 model 2
ayfa, - 1 Ine,fa (exponential/linear)-
>~ 0.6768 (for a)/ar; = 10)
£~ 1- 1+1/3 [(ay/a;) - 1] model 6
(ay /o) +1 (linear/linear)

0.6364 (for ozz/al = 10)

For both L =~ 1 and 042/041 ~ 1, these reduce to £k = 0.5. With
these low loss approximations, T can be evaluated in terms of
o, /0‘1’ T, and T2. Then I can ge determined accurately and

_ directly without integration or iteration, using

1
L = [
1-(T /Tp)
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Table 1. Summary of various approximations for k required to calculate Tp

Model Parameter

a(x) T(x) L k

o o
2 2
2 (.5 + 0.01768 L (dB) + 0.01768 — (dB) - 0.000368 L (dB) o (dB)
o
i 1

aylay 1
N - L ~1
[(oz2/a1) -1 ln(az/ozl)] ( )

(cc2 —ozl)l or
/D n (e, /e) x In (o, for, ) .
aye I R Y ) I WS S P
(@yfa) -1 Infa,fe))
1 1
( — R
I —LM‘ —2- = 1 (Ref. 1, Model 3)
1-1/L oy
[ed
2
zo.s}L =1,— =1
|
(¥2 o
= (,5+(0.01768 L(dB) + 0.01364 .:x— (dB) -~ 0.000309 L (dB) -a—- (dB)
1 1
o
1+_].'_<_2__ )
%
g te)l  ~p- — (L~1)
x x 2 2.
6 @, +(a2—a1)T T1 +(T2-T1)—l—- e 2 1
1 1
F oo — .
iad M —'2-= 1 (Ref. 1, Model 3)
1-1/L a, t
[¢7
20.5}L = 1’__2. =1
Q
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Fig. 1. Plot of k vs «,/w, for various values of L for model 2

(T, = 250K, T, = 290 K)

284 I I I I

282

280

278

276

274

272 ]

270 } | | ]
0 2 4 6 8 10

az/a], dB

Fig. 2. Plotof T, vs a,/«, for various values of L for model 2
(T, = 250K, T, = 290 K)
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Fig. 3. Plotof T, vs a,/«, for various values of L for model 2
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Fig. 4. Plot of T, vs a,/a, for small increments of L for model 2

(T, = 250 K, T, = 290 K)




Appendix A

Linear/Linear Variable Parameter Model

Consider the linear/linear variable parameter model (Ref. 1,
model 6) with

a() = o t(a,- )y
(A1)
T(y) = Tl + (T2~ Tl)y
Then
= 2;nL
L (—i+ 1)
&y
1 InL
23 Q,
—2‘+1 [Zy +(—— )yz:]
) oy 1
[1+(——— 1) y] e
1
0
° [Tl + (T2 - Tl)y] dy (A'z)
Expanding
T = T1 - 1/L)+(T2— Tl)(l—I) (A-3)
where
(041 + a2)l
L =e 2

: s
I = f J e
0
Equating Egs. (1) and (A-3)
Tp =T, +tk(T,-T)) (A4)
where

1-7

k=1

The solution for & from integration of / is shown plotted in

-Fig, A-1 over a range of values for (,/a,) and L. This can be

approximated with the expression

k = 0.5+0.01768 L (dB) + 0.01364 t, /ct, (dB)

- 0.000309 L (dB) a /o, (dB) (A-5)
forL=1"
1+ 1/3 (o, fer;) - 1] "
T T gl 1 (4-6)
k =~ 0.6364 (for a, /o, = 10)

R

k=05 (fora,/ea; = 1)

T, is shown plotted in Figs. A2 for T, = 250K and T, =%
290K for a range of values for (o, /a,) and L.
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Fig. A-1. Plot of k vs o,/ for various values of L for model 6
(T, = 250K, T, = 290 K)
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Fig. A-2. Pilotof Tp VS a,/a, for various values of L for model 6
(T, = 250K, T,=290K)




